Abstrakt: |
Seven zygotically active genes have been identified in Drosophila that determine the fate of dorsal cells in the developing embryo. decapentaplegic (dpp), a member of the transforming growth factor-beta (TGF-beta) family, appears to play the central role in dorsal ectoderm formation, as mutations in this gene confer the most severe mutant phenotype of this group of genes. dpp's activity is modulated by tolloid, which also has a role in the determination of dorsal cell fate. tolloid encodes a protein that contains a metalloprotease domain and regulatory domains consisting of two EGF motifs and five C1r/s repeats. We have generated several mutant tolloid alleles and have examined their interaction with a graded set of dpp point alleles. Some tolloid alleles act as dominant enhancers of dpp in a trans heterozygote, and are therefore antimorphic alleles. However, a tolloid deficiency shows no such genetic interaction. To characterize the nature of the tolloid mutations, we have sequenced eighteen tolloid alleles. We find that five of the seven alleles that act as dominant enhancers of dpp are missense mutations in the protease domain. We also find that most tolloid alleles that do not interact with dpp are missense mutations in the C-terminal EGF and C1r/s repeats, or encode truncated proteins that delete these repeats. Based on these data, we propose a model in which the tolloid protein functions by forming a complex containing DPP via protein-interacting EGF and C1r/s domains, and that the protease activity of TOLLOID is necessary, either directly or indirectly, for the activation of the DPP complex.(ABSTRACT TRUNCATED AT 250 WORDS) |