Visualization of agonist-induced association and trafficking of green fluorescent protein-tagged forms of both beta-arrestin-1 and the thyrotropin-releasing hormone receptor-1.

Autor: Groarke, D A, Wilson, S, Krasel, C, Milligan, G
Zdroj: Journal of Biological Chemistry; August 1999, Vol. 274 Issue: 33 p23263-9, 7p
Abstrakt: A fusion protein (beta-arrestin-1-green fluorescent protein (GFP)) was constructed between beta-arrestin-1 and a modified form of the green fluorescent protein from Aequorea victoria. Expression in HEK293 cells allowed immunological detection of an 82-kDa cytosolic polypeptide with antisera to both beta-arrestin-1 and GFP. Transient expression of this construct in HEK293 cells stably transfected to express the rat thyrotropin-releasing hormone receptor-1 (TRHR-1) followed by confocal microscopy allowed its visualization evenly distributed throughout the cytoplasm. Addition of thyrotropin-releasing hormone (TRH) caused a profound and rapid redistribution of beta-arrestin-1-GFP to the plasma membrane followed by internalization of beta-arrestin-1-GFP into distinct, punctate, intracellular vesicles. TRH did not alter the cellular distribution of GFP transiently transfected into these cells nor the distribution of beta-arrestin-1-GFP following expression in HEK293 cells lacking the receptor. To detect potential co-localization of the receptor and beta-arrestin-1 in response to agonist treatment, beta-arrestin-1-GFP was expressed stably in HEK293 cells. A vesicular stomatitis virus (VSV)-tagged TRHR-1 was then introduced transiently. Initially, the two proteins were fully resolved. Short term exposure to TRH resulted in their plasma membrane co-localization, and sustained exposure to TRH resulted in their co-localization in punctate, intracellular vesicles. In contrast, beta-arrestin-1-GFP did not relocate or adopt a punctate appearance in cells that did not express VSV-TRHR-1. Reciprocal experiments were performed, with equivalent results, following transient expression of beta-arrestin-1 into cells stably expressing VSVTRHR-1-GFP. These results demonstrate the capacity of beta-arrestin-1-GFP to interact with the rat TRHR-1 and directly visualizes their recruitment from cytoplasm and plasma membrane respectively into overlapping, intracellular vesicles in an agonist-dependent manner.
Databáze: Supplemental Index