STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone.

Autor: O'Brien, C A, Gubrij, I, Lin, S C, Saylors, R L, Manolagas, S C
Zdroj: Journal of Biological Chemistry; July 1999, Vol. 274 Issue: 27 p19301-8, 8p
Abstrakt: Interleukin (IL)-6-type cytokines stimulate osteoclastogenesis by activating gp130 in stromal/osteoblastic cells and may mediate some of the osteoclastogenic effects of other cytokines and hormones. To determine whether STAT3 is a downstream effector of gp130 in the osteoclast support function of stromal/osteoblastic cells and whether the gp130/STAT3 pathway is utilized by other osteoclastogenic agents, we conditionally expressed dominant negative (dn)-STAT3 or dn-gp130 in a stromal/osteoblastic cell line (UAMS-32) that supports osteoclast formation. Expression of either dominant negative protein abolished osteoclast formation stimulated by IL-6 + soluble IL-6 receptor, oncostatin M, or IL-1 but not by parathyroid hormone or 1,25-dihydroxyvitamin D3. Because previous studies suggested that IL-6-type cytokines may stimulate osteoclastogenesis by inducing expression of the tumor necrosis factor-related protein, receptor activator of NF-kappaB ligand (RANKL), we conditionally expressed RANKL in UAMS-32 cells and found that this was sufficient to stimulate osteoclastogenesis. Moreover, dn-STAT3 blocked the ability of either IL-6 + soluble IL-6 receptor or oncostatin M to induce RANKL. These results establish that STAT3 is essential for gp130-mediated osteoclast formation and that the target of STAT3 during this process is induction of RANKL. In addition, this study demonstrates that activation of the gp130-STAT3 pathway in stromal/osteoblastic cells mediates the osteoclastogenic effects of IL-1, but not parathyroid hormone or 1, 25-dihydroxyvitamin D3.
Databáze: Supplemental Index