Abstrakt: |
In studies to define mechanisms of ERK activation in Chinese hamster ovary cells, we have observed an inverse correlation between CRKII-C3G complex formation and ERK activity. That is, we were able to coprecipitate the guanine nucleotide exchange factor C3G with the adaptor protein CRKII in lysates from suspended cells that had low ERK activity, but we could not do so or could do so less efficiently in lysates of adherent cells with increased ERK activity. Consistent with the presence of a functional CRKII-C3G complex, we detected more GTP-loaded RAP1 in suspension than adherent lysates. Overexpression of cDNAs encoding B-RAF, CRKII W109L, and PTP1B C215S activated ERK in suspension cells, the latter two constructs also disrupting CRKII-C3G complex formation. Finally, we have also observed that certain integrin alpha subunit cytoplasmic splice variants differentially regulate ERK1/2 but also in a manner that correlated with levels of a CRKII-C3G complex. Thus, these data suggest the involvement of integrins in an ERK suppression pathway mediated by CRKII-C3G complex formation and downstream signaling from activated RAP1. |