Autor: |
Fei, Y J, Romero, M F, Krause, M, Liu, J C, Huang, W, Ganapathy, V, Leibach, F H |
Zdroj: |
Journal of Biological Chemistry; March 2000, Vol. 275 Issue: 13 p9563-71, 9p |
Abstrakt: |
We have cloned and functionally characterized a novel, neuron-specific, H(+)-coupled oligopeptide transporter (OPT3) from Caenorhabditis elegans that functions predominantly as a H(+) channel. The opt3 gene is approximately 4.4 kilobases long and consists of 13 exons. The cDNA codes for a protein of 701 amino acids with 11 putative transmembrane domains. When expressed in mammalian cells and in Xenopus laevis oocytes, OPT3 cDNA induces H(+)-coupled transport of the dipeptide glycylsarcosine. Electrophysiological studies of the transport function of OPT3 in Xenopus oocytes show that this transporter, although capable of mediating H(+)-coupled peptide transport, functions predominantly as a H(+) channel. The H(+) channel activity of OPT3 is approximately 3-4-fold greater than the H(+)/peptide cotransport activity as determined by measurements of H(+) gradient-induced inward currents in the absence and presence of the dipeptide using the two-microelectrode voltage clamp technique. A downhill influx of H(+) was accompanied by a large intracellular acidification as evidenced from the changes in intracellular pH using an ion-selective microelectrode. The H(+) channel activity exhibits a K(0.5)(H) of 1.0 microM at a membrane potential of -50 mV. At the level of primary structure, OPT3 has moderate homology with OPT1 and OPT2, two other H(+)-coupled oligopeptide transporters previously cloned from C. elegans. Expression studies using the opt3::gfp fusion constructs in transgenic C. elegans demonstrate that opt3 gene is exclusively expressed in neurons. OPT3 may play an important physiological role as a pH balancer in the maintenance of H(+) homeostasis in C. elegans. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|