Luminal Ca2+ protects against thapsigargin inhibition in neuronal endoplasmic reticulum.

Autor: Wells, K M, Abercrombie, R F
Zdroj: Journal of Biological Chemistry; February 1998, Vol. 273 Issue: 9 p5020-5, 6p
Abstrakt: Thapsigargin is a specific and potent inhibitor of sarco/endoplasmic reticulum Ca2+-ATPases. However, in whole rat brain microsomes, 1 microM thapsigargin had no significant effect on the 10-min time course of ATP-dependent Ca2+ uptake in the absence of the luminal Ca2+ chelator oxalate. In contrast, 50 mM oxalate resolved a thapsigargin-sensitive Ca2+ uptake rate (IC50 approximately 1 nM thapsigargin) five times that of a thapsigargin-insensitive rate. This remaining approximately 20% of the total ATP-dependent accumulation was insensitive to thapsigargin (up to 10 microM), slightly less sensitive to vanadate inhibition, and unresponsive to 5 microM inositol 1,4,5-trisphosphate or 10 mM caffeine. Measuring both 12-min Ca2+ uptake and initial Ca2+ uptake rates, the apparent thapsigargin sensitivity increased as oxalate concentrations increased from 10 to 50 mM, corresponding to a range of luminal free Ca2+ concentrations of approximately 300 down to 60 nM. Addition of oxalate during steady-state 45Ca accumulation rapidly resolved the aforementioned thapsigargin sensitivity. These results strongly suggest that luminal Ca2+ may protect a large portion of neuronal endoplasmic reticulum Ca2+ pumps against thapsigargin inhibition. Although high [Ca2+] has been previously shown to protect against thapsigargin inhibition in several reticular membrane preparations, our results suggest that luminal Ca2+ alone is responsible for mediating this effect in neurons.
Databáze: Supplemental Index