Autor: |
Clark, G J, Drugan, J K, Rossman, K L, Carpenter, J W, Rogers-Graham, K, Fu, H, Der, C J, Campbell, S L |
Zdroj: |
Journal of Biological Chemistry; August 1997, Vol. 272 Issue: 34 p20990-3, 4p |
Abstrakt: |
Although Raf-1 is a critical effector of Ras signaling and transformation, the mechanism by which Ras promotes Raf-1 activation is complex and remains poorly understood. We recently reported that Ras interaction with the Raf-1 cysteine-rich domain (Raf-CRD, residues 139-184) may be required for Raf-1 activation. The Raf-CRD is located in the NH2-terminal negative regulatory domain of Raf-1 and is highly homologous to cysteine-rich domains found in protein kinase C family members. Recent studies indicate that the structural integrity of the Raf-CRD is also critical for Raf-1 interaction with 14-3-3 proteins. However, whether 14-3-3 proteins interact directly with the Raf-CRD and how this interaction may mediate Raf-1 function has not been determined. In the present study, we demonstrate that 14-3-3 zeta binds directly to the isolated Raf-CRD. Moreover, mutation of Raf-1 residues 143-145 impairs binding of 14-3-3, but not Ras, to the Raf-CRD. Introduction of mutations that impair 14-3-3 binding resulted in full-length Raf-1 mutants with enhanced transforming activity. Thus, 14-3-3 interaction with the Raf-CRD may serve in negative regulation of Raf-1 function by facilitating dissociation of 14-3-3 from the NH2 terminus of Raf-1 to promote subsequent events necessary for full activation of Raf-1. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|