Binding of activated cyclosome to p13(suc1). Use for affinity purification.

Autor: Sudakin, V, Shteinberg, M, Ganoth, D, Hershko, J, Hershko, A
Zdroj: Journal of Biological Chemistry; July 1997, Vol. 272 Issue: 29 p18051-9, 9p
Abstrakt: Previous studies have indicated that a approximately 1,500-kDa complex, designated the cyclosome or anaphase-promoting complex, has a regulated cyclin-ubiquitin ligase activity that targets cyclin B for degradation at the end of mitosis. The cyclosome is inactive in the interphase of the embryonic cell cycle and is converted to the active form in late mitosis in a phosphorylation-dependent process initiated by protein kinase Cdc2-cyclin B. We show here that the active, phosphorylated form of the cyclosome from clam oocytes binds to p13(suc1), a protein known to associate with Cdc2. The following evidence indicates that the binding of the cyclosome to p13(suc1) is not mediated via the Cdc2-cyclin B complex: (a) activated cyclosome binds to p13(suc1)-Sepharose following its separation from Cdc2-cyclin B by gel filtration chromatography; (b) cyclosome from interphase extracts, activated by a kinase in which cyclin B has been replaced by an N-terminally truncated derivative fused to glutathione S-transferase, binds well to p13(suc1)-Sepharose but not to glutathione-agarose. An alternative possibility, that the phosphorylated cyclosome binds directly to a phosphate-binding site of p13(suc1), is supported by the observation that the cyclosome is efficiently eluted from p13(suc1)-Sepharose by phosphate-containing compounds. This information was utilized to develop a procedure for the affinity purification of the cyclosome. A factor abundant in the fraction not adsorbed to p13(suc1)-Sepharose stimulates the activity of purified cyclosome. It is suggested that binding of Suc1 may have a role in the regulation of cyclosome activity.
Databáze: Supplemental Index