Autor: |
Via, L E, Deretic, D, Ulmer, R J, Hibler, N S, Huber, L A, Deretic, V |
Zdroj: |
Journal of Biological Chemistry; May 1997, Vol. 272 Issue: 20 p13326-31, 6p |
Abstrakt: |
Mycobacterium tuberculosis and the closely related organism Mycobacterium bovis can survive and replicate inside macrophages. Intracellular survival is at least in part attributed to the failure of mycobacterial phagosomes to undergo fusion with lysosomes. The transformation of phagosomes into phagolysosomes involves gradual acquisition of markers from the endosomal compartment. Members of the rab family of small GTPases which confer fusion competence in the endocytic pathway are exchanged sequentially onto the phagosomal membranes in the course of their maturation. To identify the step at which the fusion capability of phagosomes containing mycobacteria is compromised, we purified green fluorescent protein-labeled M. bovis BCG phagosomal compartments (MPC) and compared GTP-binding protein profiles of these vesicles with latex bead phagosomal compartments (LBC). We report that the MPC do not acquire rab7, specific for late endosomes, even 7 days postinfection, whereas this GTP-binding protein is present on the LBC within hours after phagocytosis. By contrast, rab5 is retained and enriched with time on the MPC, suggesting fusion competence with an early endosomal compartment. Prior infection of macrophages with M. bovis BCG also affected the dynamics of rab5 and rab7 acquisition by subsequently formed LBC. Selective exclusion of rab7, coupled with the retention of rab5 on the mycobacterial phagosome, may allow organisms from the M. tuberculosis complex to avert the usual physiological destination of phagocytosed material. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|