The sequence of human betaB1-crystallin cDNA allows mass spectrometric detection of betaB1 protein missing portions of its N-terminal extension.

Autor: David, L L, Lampi, K J, Lund, A L, Smith, J B
Zdroj: Journal of Biological Chemistry; February 1996, Vol. 271 Issue: 8 p4273-9, 7p
Abstrakt: The sequence of human betaB1-crystallin cDNA encoded a protein of 251 amino acids in length. Mass spectrometric analysis of intact betaB1 from young human lens confirmed the deduced amino acid sequence. Lenses of human donors newborn to 27 years of age also contained partially degraded forms of betaB1 missing 15, 33, 34, 35, 36, 39, 40, and 41 amino acid residues from their N-terminal extensions. The similarity of the cleavage site between residues 15 and 16 in human betaB1 to the cleavage occurring in bovine betaB1 suggested that lenses of both species may contain a similar proteolytic activity. The remaining cleavage sites occurring in human betaB1 did not closely match those occurring in other species, possibly due to the widely divergent amino acid sequence of the N-terminal extension of betaB1 amoung species. Results from animal models suggest that cleavage of the N-terminal extension of betaB1-crystallin could enhance protein insolubilization and cataract in lens. However, the presence of partially degraded betaB1-crystallins in both water-soluble and water-insoluble fractions of lenses of young donors suggested that the rate that proteolyzed betaB1-crystallins become water-insoluble is relatively slow in humans.
Databáze: Supplemental Index