Ca2+ inhibition of type III adenylyl cyclase in vivo.

Autor: Wayman, G A, Impey, S, Storm, D R
Zdroj: Journal of Biological Chemistry; September 1995, Vol. 270 Issue: 37 p21480-6, 7p
Abstrakt: Type III adenylyl cyclase is stimulated by beta-adrenergic agonists and glucagon in vitro and in vivo, but not by Ca2+ and calmodulin. However, the enzyme is stimulated by Ca2+ and calmodulin in vitro when it is concomitantly activated by the guanyl nucleotide stimulatory protein Gs (Choi, E. J., Xia, Z., and Storm, D. R. (1992a) Biochemistry 31, 6492-6498). Here, we examined regulation of type III adenylyl cyclase by Gs-coupled receptors and intracellular Ca2+ in vivo. Surprisingly, intracellular Ca2+ inhibited hormone-stimulated type III adenylyl cyclase activity. Submicromolar concentrations of intracellular free Ca2+, which stimulated type I adenylyl cyclase, inhibited glucagon- or isoproterenol-stimulated type III adenylyl cyclase. Inhibition of type III adenylyl cyclase by intracellular Ca2+ was not mediated by Gi, cAMP-dependent protein kinase, or protein kinase C. However, an inhibitor of CaM kinases antagonized Ca2+ inhibition of the enzyme, and coexpression of constitutively activated CaM kinase II completely inhibited isoproterenol-stimulated type III adenylyl cyclase activity. We propose that Ca2+ inhibition of type III adenylyl cyclase may serve as a regulatory mechanism to attenuate hormone-stimulated cAMP levels in some tissues.
Databáze: Supplemental Index