Domain closure in the catalytic chains of Escherichia coli aspartate transcarbamoylase influences the kinetic mechanism.

R transition, is stabilized by salt-bridges between Glu-50 and both Arg-167 and Arg-234. Mutation of Glu-50 to Ala shifts the enzyme toward a low activity, low affinity state (Newton, C. J., and Kantrowitz, E. R. (1990) Biochemistry, 29, 1444-1451). Kinetic isotope effects (KIE) and equilibrium isotope exchange kinetics (EIEK) have been used to probe the dynamic properties of the Glu-50-->Ala enzyme. Unlike the behavior of the wild-type enzyme, the observed kinetic isotope effect for 13C versus 12C at the carbonyl group of carbamoyl phosphate (CP) increased upon the binding of ligands which promote the formation of the R-state (Asp, N-phosphonacetyl-L-aspartate (PALA), or ATP). The maximum rate for the [14C]Asp<-->Carbamoyl aspartate (CAsp) exchange with the Glu-50-->Ala enzyme was 500-fold slower than for the wild-type enzyme; however, the rate for the [14C]CP<-->CAsp exchange was only 50-fold slower, reversing the relative rates observed with the wild-type enzyme. In addition, upon variation of substrate pairs involving Asp or CAsp, loss of inhibition effects in the CP<-->CAsp exchange indicated that the Glu-50-->Ala substitution caused the kinetic mechanism for the mutant enzyme to shift from ordered to random. Computer simulations of the EIEK data indicate that the Glu-50-->Ala mutation specifically causes strong decreases in the rates of catalysis and association-dissociation for Asp and CAsp, with minimal effects on the CP and Pi on-off rates. With substrates bound, the Glu-50-->Ala enzyme apparently does not attain a full R-state conformation. The PALA-activated Glu-50-->Ala enzyme, however, exhibits substrate affinities comparable to those for the wild-type enzyme, but fails to restore the preferred order substrate binding. Unlike the wild-type enzyme, both the T and R-states of the Glu-50-->Ala enzyme contribute to catalysis. A third state, I, is proposed for the Glu-50-->Ala enzyme, in which random order substrate binding is exhibited, and the catalytic step contributes significantly to overall rate limitation. -->
Autor: Lee, B H, Ley, B W, Kantrowitz, E R, O'Leary, M H, Wedler, F C
Zdroj: Journal of Biological Chemistry; June 1995, Vol. 270 Issue: 26 p15620-7, 8p
Abstrakt: The closure of the two domains of the catalytic chains of Escherichia coli aspartate transcarbamoylase, which is critical for completion of the T-->R transition, is stabilized by salt-bridges between Glu-50 and both Arg-167 and Arg-234. Mutation of Glu-50 to Ala shifts the enzyme toward a low activity, low affinity state (Newton, C. J., and Kantrowitz, E. R. (1990) Biochemistry, 29, 1444-1451). Kinetic isotope effects (KIE) and equilibrium isotope exchange kinetics (EIEK) have been used to probe the dynamic properties of the Glu-50-->Ala enzyme. Unlike the behavior of the wild-type enzyme, the observed kinetic isotope effect for 13C versus 12C at the carbonyl group of carbamoyl phosphate (CP) increased upon the binding of ligands which promote the formation of the R-state (Asp, N-phosphonacetyl-L-aspartate (PALA), or ATP). The maximum rate for the [14C]Asp<-->Carbamoyl aspartate (CAsp) exchange with the Glu-50-->Ala enzyme was 500-fold slower than for the wild-type enzyme; however, the rate for the [14C]CP<-->CAsp exchange was only 50-fold slower, reversing the relative rates observed with the wild-type enzyme. In addition, upon variation of substrate pairs involving Asp or CAsp, loss of inhibition effects in the CP<-->CAsp exchange indicated that the Glu-50-->Ala substitution caused the kinetic mechanism for the mutant enzyme to shift from ordered to random. Computer simulations of the EIEK data indicate that the Glu-50-->Ala mutation specifically causes strong decreases in the rates of catalysis and association-dissociation for Asp and CAsp, with minimal effects on the CP and Pi on-off rates. With substrates bound, the Glu-50-->Ala enzyme apparently does not attain a full R-state conformation. The PALA-activated Glu-50-->Ala enzyme, however, exhibits substrate affinities comparable to those for the wild-type enzyme, but fails to restore the preferred order substrate binding. Unlike the wild-type enzyme, both the T and R-states of the Glu-50-->Ala enzyme contribute to catalysis. A third state, I, is proposed for the Glu-50-->Ala enzyme, in which random order substrate binding is exhibited, and the catalytic step contributes significantly to overall rate limitation.
Databáze: Supplemental Index