Synthesis and evaluation of potential multitargeted ligands based on chromene analogs for suppressing lysozyme amyloid aggregation

Autor: Fazelinejad, Hassan, Tayebee, Reza, Rostami, Shahrbanoo
Zdroj: Journal of the Iranian Chemical Society; 20240101, Issue: Preprints p1-12, 12p
Abstrakt: The formation, accumulation, and deposition of proteins aggregates are fundamental pathological characteristics underlying various disease states. Thus, the discovery and development of innovative compounds capable of impeding amyloid formation and mitigating its associated toxicity represent a highly promising therapeutic strategy. This study focused on developing a series of 2‐Amino‐4‐(phenyl) ‐3‐cyano‐4H,5H-pyrano[3,2‐c] chromene‐5‐one derivatives as multitargeted directed ligands (MTDLs) for inhibition of amyloid aggregation. The compounds were evaluated for their capacity to hinder amyloid formation by hen egg white lysozyme (HEWL), a well-established model protein for amyloid investigations. The inhibitory impact of the compounds was assessed through a range of methods, such as Congo red and Thioflavin T binding assays, atomic force microscopy, and cell-based cytotoxicity assays. The results provide compelling evidence that all tested compounds effectively inhibit HEWL amyloid fibril formation and reduce its associated cytotoxicity with different efficiencies. Our investigation reveals those hydrophobic substituents, such as -O-Methyl and -NO2, significantly enhance the inhibitory potential of our compound's basic structure, while the presence of -Br diminishes it. Methoxy and nitro substituents exhibit a greater affinity for participating in hydrogen bonding, potentially leading to an augmented inhibitory efficacy when compared to bromo derivatives. The results highlight the importance of hydrophobicity, aromaticity, and hydrogen bonding capability in determining the amyloid inhibition activity exhibited by our compounds. These findings provide valuable insights for future rational designs of amyloid inhibitors for potential therapeutic interventions in amyloid-associated diseases.
Databáze: Supplemental Index