2-Indolylphosphines, a New Class of Tunable Ligands:  Their Synthesis, Facile Derivatization, and Coordination to Palladium(II)

Autor: Yu, J. O., Lam, E., Sereda, J. L., Rampersad, N. C., Lough, A. J., Browning, C. S., Farrar, D. H.
Zdroj: Organometallics; January 2005, Vol. 24 Issue: 1 p37-47, 11p
Abstrakt: The generation of new metal complexes with potentially interesting properties provides the motivation for designing novel polydentate bridging ligands. Herein we report the syntheses of tertiary indolylphenylphosphines L, where L = diphenyl(3-methyl-2-indolyl)phosphine (P(C6H5)2(C9H8N), 1), phenylbis(3-methyl-2-indolyl)phosphine (P(C6H5)(C9H8N)2, 2), and bis(1H-3-indolyl)methane-(2,12)-phenylphosphine (P(C6H5)(C17H12N2), 3). Ligands 13 were functionalized at the indolyl nitrogen with a variety of both electron-withdrawing and electron-donating groups. The solid-state structures of 1, 2, and N-functionalized indolylphosphines diphenyl(3-methyl-1-benzyl-2-indolyl)phosphine (P(C6H5)2(C9H7N(CH2C6H5)), N-Bz-1) and bis[1-(CH2C6F5)-3-indolyl]methane-(2,12)-phenylphosphine (P(C6H5)(C17H10N2[CH2C6F5]2), (N-F5Bz)2-3), are reported. The reaction of ligands 13 with 1 equiv of Pd(COD)Cl2 led to the formation of Pd(II) complexes of the type [Pd(L)Cl(μ-Cl)]2 (4, L = 1; 5, L = 2; 6, L = 3). The products were characterized by 1H, 13C, and 31P NMR spectroscopy, mass spectrometry, and elemental analysis. X-ray crystallography established the dimeric structure of the products and confirmed the ability of the ligands to serve, in the absence of base, as monodentate P-donors in reaction with a transition metal. The indolyl NH groups of the complexes 46 demonstrate a marked propensity for hydrogen bonding in the solid state.
Databáze: Supplemental Index