Autor: |
Parveen, Abdul Bari Muneera, Jayabharathi, K., Muthupandi, Muthusamy, Kumar, Naveen, Chauhan, Shakti Singh, Rajasugunasekar, D., Dasgupta, Modhumita Ghosh |
Zdroj: |
Silvae Genetica; January 2024, Vol. 73 Issue: 1 p126-141, 16p |
Abstrakt: |
Genotype × environment (G×E) interaction is a major challenge in selecting superior genotypes based on growth traits in Eucalyptussince phenotypic variability is significantly affected by environmental heterogeneity. The aim of the present investigation was to understand the relationship between wood property traits and fibre biometry in the bi-parental mapping population of E. camaldulensis × E. tereticornisacross three locations and identify stable genotypes based on multiple traits to improve prediction accuracy in breeding programs. High broad-sense heritability was documented for fibre parameters indicating a good prospect of these traits for genotype selection in hybrid breeding programmes in Eucalyptus. Significant positive correlation of fibre parameters with cellulose, acoustic velocity, DMoE and negative correlation with lignin reiterate that the fibre traits can be improved by the selection of genotype for improved wood property traits. Multi-Trait Stability Index (MTSI) and weighted average of absolute scores of the genotype index (WAASB) short-listed four genotypes (C343, C327, C246 and C161) with improved wood property traits and the mean of selected genotypes for all traits was significantly higher than the grand mean of the overall genotypes. The identified superior and stable genotypes with improved wood properties and fibre biometry can be used in plantation programs or as genitors in breeding programs. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|