Development and validation of a rapid loop-mediated isothermal amplification assay for the detection of Chrysomyxaand characterization of Chrysomyxa woroniniioverwintering on Piceain China

Autor: Yu, Wan Ting, Wang, Xin, Yin, Tan, Tsui, Clement Kin-Ming, You, Chong Juan
Zdroj: IMA Fungus; December 2024, Vol. 15 Issue: 1
Abstrakt: Chrysomyxarusts cause significant damage to spruce in both natural forests and plantations. Particularly, Three Chrysomyxaspecies, Chrysomyxa deformans, Chrysomyxa qilianensis, and Chrysomyxa rhododendri, listed as National Forest Dangerous Pests in China, have severely affected many economically and ecologically important spruce native species in China. Also, Chrysomyxa arctostaphyli, an important plant quarantine fungus, causes a damaging broom rust disease on spruce. Therefore, rapid, and efficient detection tools are urgently needed for proper rust disease detection and management. In this study, a sensitive, genus-specific loop-mediated isothermal amplification (LAMP) assay targeting the ITS-28S rRNA region was developed to detect the presence of Chrysomyxain spruce needle and bud samples. After optimization and validation, the LAMP assay was found to be sensitive to detect as low as 5.2 fg/µL DNA, making it suitable for rapid on-site testing for rust infection. The assay was also specific to Chrysomyxaspecies, with no positive signals from other rust genus/species. The application of LAMP in the early detection of rust infections in spruce needles and buds was investigated, and spatial colonization profiles as well as the means of overwintering of Chrysomyxa woroniniiin infected buds and branches were verified using the LAMP assay. This LAMP detection method will facilitate further studies on the characteristics of the life cycle and inoculation of other systemic rusts.
Databáze: Supplemental Index