glypican-3Controls Cellular Responses to Bmp4in Limb Patterning and Skeletal Development

Autor: Paine-Saunders, Stephenie, Viviano, Beth L., Zupicich, Joel, Skarnes, William C., Saunders, Scott
Zdroj: Developmental Biology; September 2000, Vol. 225 Issue: 1 p179-187, 9p
Abstrakt: Glypicans represent a family of six cell surface heparan sulfate proteoglycans in vertebrates. Although no specific in vivofunctions have thus far been described for these proteoglycans, spontaneous mutations in the human and induced deletions in the mouse glypican-3(Gpc3) gene result in severe malformations and both pre- and postnatal overgrowth, known clinically as the Simpson–Golabi–Behmel syndrome (SGBS). Mice carrying mutant alleles of Gpc3created by either targeted gene disruption or gene trapping display a wide range of phenotypes associated with SGBS including renal cystic dysplasia, ventral wall defects, and skeletal abnormalities that are consistent with the pattern of Gpc3expression in the mouse embryo. Previous studies in Drosophilahave implicated glypicans in the signaling of decapentaplegic,a BMP homolog. Our experiments with mice show a significant relationship between vertebrate BMP signaling and glypican function; GPC3-deficient animals were mated with mice haploinsufficient for bone morphogenetic protein-4(Bmp4) and their offspring displayed a high penetrance of postaxial polydactyly and rib malformations not observed in either parent strain. This previously unknown link between glypican-3 and BMP4 function provides evidence of a role for glypicans in vertebrate limb patterning and skeletal development and suggests a mechanism for the skeletal defects seen in SGBS.
Databáze: Supplemental Index