Abstrakt: |
The common bacterium Escherichia colihas demonstrated potential in the field of biodegradation. E. coliis naturally capable of biodegradation because it carries a variety of enzymes that are essential for the breakdown of different substances. The degradation process is effectively catalyzed by these enzymes. The collaborative effects of E. coli’s aryl sulfotransferase, alkanesulfonate moonoxygenase, and azoreductase enzymes on the breakdown of sulfur dyes from industrial effluents are investigated in this work. ExPASY ProtParam was used to confirm the stability of the enzyme, showing an instability index less than 40. We determined the maximum binding affinities of these enzymes with sulfur dye pollutants – 1-naphthalenesulfonic acid, sulfogene, sulfur green 3, sulfur red 6, sulfur red 1, sulfur yellow 2, thianthrene, thiazone, and thional – using comparative molecular docking. Significantly, the highest binding affinity was shown by monooxygenase (−12.1), whereas aryl sulfotransferase and azoreductase demonstrated significant energies of −11.8 and −11.4, respectively. The interactions between proteins and ligands in the docked complexes were examined. To evaluate their combined effects, co-expression analysis of genes and enzyme bioengineering were carried out. Using aryl sulfotransferase, alkanesulfonate monooxygenase, and azoreductase, this study investigates the enzymatic degradation of sulfur dye pollutants, thereby promoting environmentally friendly and effective sulfur dye pollutant management. |