Identification of SARS-CoV-2 Mpro inhibitors through deep reinforcement learning for de novodrug design and computational chemistry approachesElectronic supplementary information (ESI) available: The authors have cited additional references within the ESI.40–46See DOI: https://doi.org/10.1039/d4md00106k

Autor: Hazemann, Julien, Kimmerlin, Thierry, Lange, Roland, Sweeney, Aengus Mac, Bourquin, Geoffroy, Ritz, Daniel, Czodrowski, Paul
Zdroj: MedChemComm; 2024, Vol. 15 Issue: 6 p2146-2159, 14p
Abstrakt: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of coronavirus disease (COVID-19) since its emergence in December 2019. As of January 2024, there has been over 774 million reported cases and 7 million deaths worldwide. While vaccination efforts have been successful in reducing the severity of the disease and decreasing the transmission rate, the development of effective therapeutics against SARS-CoV-2 remains a critical need. The main protease (Mpro) of SARS-CoV-2 is an essential enzyme required for viral replication and has been identified as a promising target for drug development. In this study, we report the identification of novel Mpro inhibitors, using a combination of deep reinforcement learning for de novodrug design with 3D pharmacophore/shape-based alignment and privileged fragment match count scoring components followed by hit expansions and molecular docking approaches. Our experimentally validated results show that 3 novel series exhibit potent inhibitory activity against SARS-CoV-2 Mpro, with IC50values ranging from 1.3 μM to 2.3 μM and a high degree of selectivity. These findings represent promising starting points for the development of new antiviral therapies against COVID-19.
Databáze: Supplemental Index