Autor: |
Butt, A. G., Clapp, W. L., Frizzell, R. A. |
Zdroj: |
American Journal of Physiology - Cell Physiology; April 1990, Vol. 258 Issue: 4 pC630-C638, 9p |
Abstrakt: |
Increased basolateral membrane K conductance accompanies stimulation of Cl secretion across canine trachea. To assess the K conductance properties, we permeabilized the apical membranes with amphotericin B and monitored the current and conductance caused by K flow across the basolateral membranes. Under basal unstimulated conditions, two K conductances could be distinguished by blockers. One was inhibited only by barium; the other was sensitive also to quinidine and lidocaine. The permeabilities of the basal conductance pathways to K and Rb were similar (PK/PRb approximately equal to 1.5). The secretory agonist, epinephrine, selectively increased the quinidine-insensitive conductance, implicating it in the Cl secretory response. Cell swelling induced a third conductance with a low permeability to Rb (PK/PRb approximately equal to 10) that was quinidine sensitive. In tissues not treated with amphotericin, neither quinidine nor Rb-for-K replacement inhibited transepithelial Cl secretion. Thus neither of the quinidine-sensitive K conductances (basal or swelling induced) contribute to the increase in basolateral K conductance during Cl secretion. Cell shrinkage inhibited all three conductances and secretion, suggesting that the initial priority of the cell is volume regulation. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|