Abstrakt: |
AMP deaminase, which hydrolyses AMP to inosine 5'-monophosphate (IMP) and NH3 at high rates during excessive energy demands in skeletal muscle, is activated when bound to myosin in vitro. We evaluated AMP deaminase binding in vivo during muscle contractions to assess whether binding 1) is inherent to deamination and found only with high rates of IMP production or simply coincident with the contractile process and 2) requires cellular acidosis. AMP deaminase activity (mumol.min-1.g-1) was measured in the supernatant (free) and 10(4)-g pellet (bound) homogenate fractions of muscle of anesthetized rats after in situ contractions to determine the percent bound. In resting muscle, nearly all (approximately 90%) AMP deaminase is free (cytosolic). During contractions when energy balance was well maintained, binding did not significantly differ from resting values. However, during intense contraction conditions that lead to increased IMP concentration, binding increased to approximately 60% (P less than 0.001) in fast-twitch and approximately 50% in slow-twitch muscle. Binding increased in an apparent first-order manner and preceded initiation of IMP formation. Further, binding rapidly declined within 1 min after cessation of intense stimulation, even though the cell remained extremely acidotic. Extensive binding during contractions was also evident without cellular acidosis (iodoacetic acid-treated muscle). Thus the in vivo AMP deaminase-myosin complex association/dissociation is not coupled to changes in cellular acidosis. Interestingly, binding remained elevated after contractions, if energy recovery was limited by ischemia. Our results are consistent with myosin binding having a role in AMP deaminase activation and subsequent IMP formation in contracting muscle. |