Purine nucleoside formation in rat skeletal muscle fiber types

Autor: Arabadjis, P. G., Tullson, P. C., Terjung, R. L.
Zdroj: American Journal of Physiology - Cell Physiology; May 1993, Vol. 264 Issue: 5 pC1246-C1251, 6p
Abstrakt: To determine the capacity for purine nucleotide degradation among skeletal muscle fiber types, we established energy-depleted conditions in muscles of the rat hindlimb by inducing muscle contraction during ischemia. After 5, 10, 15, or 20 min of ischemic contractions, representative muscle sections were freeze-clamped and analyzed for purine nucleotides, nucleosides, and bases. Fast-twitch muscle sections accumulated about fourfold more IMP than the slow-twitch red soleus muscle. Inosine begins to accumulate at < 0.5 mumol/g IMP in slow-twitch muscle and at approximately 2 mumol/g IMP in fast-twitch muscle. This suggests that inosine is formed intracellularly by 5'-nucleotidase acting on IMP and that the activity and/or substrate affinity of the 5'-nucleotidase present in slow-twitch muscle may be higher than in fast-twitch muscle. At similar concentrations of precursor IMP, slow-twitch muscle has a greater capacity for purine nucleoside formation and should be more dependent on salvage and de novo synthesis of purine for the maintenance of muscle adenine nucleotides. Fast-twitch muscles are better able to retain IMP for subsequent reamination due to their lower capacity to degrade IMP to inosine.
Databáze: Supplemental Index