Intracellular H+ inhibits a cloned rat kidney outer medulla K+ channel expressed in Xenopus oocytes

Autor: Tsai, T. D., Shuck, M. E., Thompson, D. P., Bienkowski, M. J., Lee, K. S.
Zdroj: American Journal of Physiology - Cell Physiology; May 1995, Vol. 268 Issue: 5 pC1173-C1178, 6p
Abstrakt: The pH sensitivity of a cloned rat kidney K+ channel, ROMK1, was examined after expression in Xenopus oocytes. Membrane currents and intracellular pH (pHi) were concomitantly monitored by the two-microelectrode voltage-clamp technique and a pH-sensitive microelectrode. Oocytes injected with ROMK1 cRNA developed a hyperpolarized resting potential of -98.7 +/- 0.98 mV and a slightly inwardly rectifying Ba(2+)-sensitive K+ current. Lowering external pH from 7.4 to 6.7 using membrane-permeable acetate buffer reduced measured pHi from 7.2 to 6.6 and reduced the ROMK1 current by 80%. The H+ blockade of ROMK1 currents was voltage independent. The relationship between ROMK1 slope conductance and pHi fitted to a titration curve suggested binding of four H+ to a site with a pK of 6.79. Extracellular acidification from pH 7.4 to 6.0 using membrane-impermeable biphthalate buffer had no effect on the ROMK1 current. The pH sensitivity of the ROMK1 channel is similar to that reported for a small-conductance native kidney K+ channel.
Databáze: Supplemental Index