Precooling via immersion in CO2-enriched water at 25°C decreased core body temperature but did not improve 10-km cycling time trial in the heat

Autor: Aidiel, Luthfil, Lim, Darren Z. Y., Chow, Kin M., Ihsan, Mohammed, Chia, Michael, Choo, Hui C.
Zdroj: Temperature; April 2024, Vol. 11 Issue: 2 p123-136, 14p
Abstrakt: ABSTRACTThis study compared the effects of precooling via whole-body immersion in 25°C CO2-enriched water (CO2WI), 25°C unenriched water (WI) or no cooling (CON) on 10-km cycling time trial (TT) performance. After 30 min of precooling (CO2WI, CON, WI) in a randomized, crossover manner, 11 male cyclists/triathletes completed 30-min submaximal cycling (65%VO2peak), followed by 10-km TT in the heat (35°C, 65% relative humidity). Average power output and performance time during TT were similar between conditions (p = 0.387 to 0.833). Decreases in core temperature (Tcore) were greater in CO2WI (−0.54 ± 0.25°C) than in CON (−0.32 ± 0.09°C) and WI (−0.29 ± 0.20°C, p = 0.011 to 0.022). Lower Tcorein CO2WI versus CON was observed at 15thmin of exercise (p = 0.050). Skin temperature was lower in CO2WI and WI than in CON during the exercise (p < 0.001 to 0.031). Only CO2WI (1029 ± 305 mL) decreased whole-body sweat loss compared with CON (1304 ± 246 mL, p = 0.029). Muscle oxygenation by near-infrared spectroscopy (NIRS), thermal sensation, and thermal comfort were lower in CO2WI and WI versus CON only during precooling (p < 0.001 to 0.041). NIRS-derived blood volume was significantly lower in CO2WI and WI versus CON during exercise (p < 0.001 to 0.022). Heart rate (p = 0.998) and rating of perceived exertion (p = 0.924) did not differ between conditions throughout the experiment. These results suggested that CO2WI maybe more effective than WI for enhanced core body cooling and minimized sweat losses.
Databáze: Supplemental Index