Triiodo-L-thyronine (T3) downregulates Npr1gene (coding for natriuretic peptide receptor-A) transcription in H9c2 cells: involvement of β-AR-ROS signaling

Autor: Nagaraj, Gopinath, Vellaichamy, Elangovan
Zdroj: Endocrine; 20240101, Issue: Preprints p1-16, 16p
Abstrakt: Introduction: Natriuretic peptide receptor-A (NPR-A) signaling system is considered as an intrinsic productive mechanism of the heart that opposes abnormal cardiac remodeling and hypertrophic growth. NPR-A is coded by Npr1gene, and its expression is downregulated in the hypertrophied heart. Aim: We sought to examine the levels of Npr1gene transcription in triiodo-L-thyronine (T3) treated hypertrophied cardiomyocyte (H9c2) cells, in vitro, and also the involvement of β-adrenergic receptor (β-AR) - Reactive oxygen species (ROS) signaling system in the down-regulation of Npr1transcription also studied. Main methods: Anti-hypertrophic Npr1gene transcription was monitored in control and T3-treated (dose and time dependent) H9c2 cells, using a real time PCR method. Further, cell size, intracellular cGMP, ROS, hypertrophy markers (ANP, BNP, α-sk, α-MHCand β-MHC), β-AR, and protein kinase cGMP-dependent 1 (PKG-I) genes expression were also determined. The intracellular cGMP and ROS levels were determined by ELISA and DCF dye method, respectively. In addition, to neutralize T3 mediated ROS generation, H9c2 cells were treated with T3 in the presence and absence of antioxidants [curcumin (CU) or N-acetyl-L-cysteine (NAC)]. Results: A dose dependent (10 pM, 100 pM, 1 nM and 10 nM) and time dependent (12 h, 24 h and 48 h) down-regulation of Npr1gene transcription (20, 39, 60, and 74% respectively; 18, 55, and 85%, respectively) were observed in T3-treated H9c2 cells as compared with control cells. Immunofluorescence analysis also revealed that a marked down regulation of NPR- A protein in T3-treated cells as compared with control cells. Further, a parallel downregulation of cGMP and PKG-I (2.4 fold) were noticed in the T3-treated cells. In contrast, a time dependent increased expression of β-AR (60, 72, and 80% respectively) and ROS (26, 48, and 74%, respectively) levels were noticed in T3-treated H9c2 cells as compared with control cells. Interestingly, antioxidants, CU or NAC co-treated T3 cells displayed a significant reduction in ROS (69 and 81%, respectively) generation and to increased Npr1gene transcription (81 and 88%, respectively) as compared with T3 alone treated cells. Conclusion: Our result suggest that down regulation of Npr1gene transcription is critically involved in T3- induced hypertrophic growth in H9c2 cells, and identifies the cross-talk between T3-β-AR-ROS and NPR-A signaling.
Databáze: Supplemental Index