Damage prediction and failure mode analysis of composite aeroengine blade impacted by the breakstone

Autor: Zhang, Xiaojing, Yu, Fangrui
Zdroj: Aerospace Systems; 20240101, Issue: Preprints p1-7, 7p
Abstrakt: Due to the excellent performance of carbon fiber-reinforced polymer (CFRP), they are widely used in the world's aircraft manufacturing industry, including aeroengine blades. During aircraft service, engine blades are often impacted by foreign objects such as breakstone, seriously affecting the airworthiness and safety of aircraft. Therefore, studying the impact resistance of carbon fiber composite materials is crucial for improving aircraft safety. In this paper, ABAQUS is used to establish a simulation model for impacting composite blades with breakstone. The VUMAT user subroutine is compiled to predict the damage of inner layer elements based on 3D-Hashin failure criterion and stiffness reduction scheme; cohesive elements based on the bilinear model are inserted between adjacent laminas to predict the delamination damage of the composite material. The damage initiation of cohesive elements is judged by QUADS criterion, and the damage evolution is performed using the B–K criterion of the energy method. Finally, based on the simulation results, the impact force, failure mode, and energy transformation during the impact process are analyzed.
Databáze: Supplemental Index