Continuous-flow fast atom bombardment mass spectrometry of oligonucleotides

Autor: van Breemem, Richard B., Martin, LeRoy B., Le, John C.
Zdroj: Journal of the American Society for Mass Spectrometry; January 1991, Vol. 2 Issue: 2 p157-163, 7p
Abstrakt: Although frit-fast atom bombardment (frit-FAB) and continuous-flow FAB mass spectrometry have become standard methods for the analysis of peptides and peptide mixtures, these techniques have not been applied previously to the analysis of oligonucleotides. Mobilephase composition, flow rate, and sample size were optimized for the analysis of oligonucleotides by negative ion frit-FAB mass spectrometry (a type of continuous-flow FAB mass spectrometry). With a mobile phase consisting of methanol/water/triethanolamine (80:20:0.5, v/v/w), flow injection frit-FAB analysis of oligonucleotides showed lower limits of detection compared to standard probe FAB mass spectrometry. For example, in order to obtain a signal-to-noise ratio of 3:1, 38 pmol of d(GTTAAC) were required for frit-FAB mass spectrometry and 62 pmol were required for standard probe FAB mass spectrometry. The largest difference between frit-FAB and standard probe FAB was observed for d(pC) 5, for which the limit of detection by frit-FAB was approximately 11-fold lower than by standard FAB mass spectrometry. Adjustment of the mobile phase to pH 7 with trifluoroacetic acid increased the limit of detection (reduced sensitivity) a minimum of sixfold. Equimolar mixtures of two or three oligonucleotides produced deprotonated molecules in identical relative abundances whether analyzed by frit-FAB or standard probe FAB mass spectrometry. Finally, frit-FAB liquid chromatography mass spectrometry was demonstrated by separating mixtures of oligonucleotides on a β-cyclodextrin high-performance liquid chromatography column with a mobile phase containing methanol, water, and triethanolamine.
Databáze: Supplemental Index