Proposal of a methodology for prediction of heavy metals concentration based on PM2.5concentration and meteorological variables using machine learning

Autor: Park, Shin-Young, Lee, Hye-Won, Kwon, Jaymin, Yoon, Sung-Won, Lee, Cheol-Min
Zdroj: Asian Journal of Atmospheric Environment; December 2024, Vol. 18 Issue: 1
Abstrakt: In this study, we developed a prediction model for heavy metal concentrations using PM2.5concentrations and meteorological variables. Data was collected from five sites, encompassing meteorological factors, PM2.5, and 18 metals over 2 years. The study employed four analytical methods: multiple linear regression (MLR), random forest regression (RFR), gradient boosting, and artificial neural networks (ANN). RFR was the best predictor for most metals, and gradient boosting and ANN were optimal for certain metals like Al, Cu, As, Mo, Zn, and Cd. Upon evaluating the final model’s predicted values against the actual measurements, differences in the concentration distribution between measurement locations were observed for Mn, Fe, Cu, Ba, and Pb, indicating varying prediction performances among sites. Additionally, Al, As, Cd, and Ba showed significant differences in prediction performance across seasons. The developed model is expected to overcome the technical limitations involved in measuring and analyzing heavy metal concentrations. It could further be utilized to obtain fundamental data for studying the health effects of exposure to hazardous substances such as heavy metals.
Databáze: Supplemental Index