Autor: |
Noriega, Natalia, Shekhirev, Mikhail, Shuck, Christopher E., Salvage, Jonathan, VahidMohammadi, Armin, Dymond, Marcus K., Lacey, Joseph, Sandeman, Susan, Gogotsi, Yury, Patel, Bhavik Anil |
Zdroj: |
ACS Applied Materials & Interfaces; February 2024, Vol. 16 Issue: 5 p6569-6578, 10p |
Abstrakt: |
In the era of the internet of things, there exists a pressing need for technologies that meet the stringent demands of wearable, self-powered, and seamlessly integrated devices. Current approaches to developing MXene-based electrochemical sensors involve either rigid or opaque components, limiting their use in niche applications. This study investigates the potential of pristine Ti3C2Txelectrodes for flexible and transparent electrochemical sensing, achieved through an exploration of how material characteristics (flake size, flake orientation, film geometry, and uniformity) impact the electrochemical activity of the outer sphere redox probe ruthenium hexamine using cyclic voltammetry. The optimized electrode made of stacked large Ti3C2Txflakes demonstrated excellent reproducibility and resistance to bending conditions, suggesting their use for reliable, robust, and flexible sensors. Reducing electrode thickness resulted in an amplified faradaic-to-capacitance signal, which is advantageous for this application. This led to the deposition of transparent thin Ti3C2Txfilms, which maintained their best performance up to 73% transparency. These findings underscore its promise for high-performance, tailored sensors, marking a significant stride in advancing MXene utilization in next-generation electrochemical sensing technologies. The results encourage the analytical electrochemistry field to take advantage of the unique properties that pristine Ti3C2Txelectrodes can provide in sensing through more parametric studies. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|