External Validation of a Digital Pathology-based Multimodal Artificial Intelligence Architecture in the NRG/RTOG 9902 Phase 3 Trial

Autor: Ross, Ashley E., Zhang, Jingbin, Huang, Huei-Chung, Yamashita, Rikiya, Keim-Malpass, Jessica, Simko, Jeffry P., DeVries, Sandy, Morgan, Todd M., Souhami, Luis, Dobelbower, Michael C., McGinnis, L. Scott, Jones, Christopher U., Dess, Robert T., Zeitzer, Kenneth L., Choi, Kwang, Hartford, Alan C., Michalski, Jeff M., Raben, Adam, Gomella, Leonard G., Sartor, A. Oliver, Rosenthal, Seth A., Sandler, Howard M., Spratt, Daniel E., Pugh, Stephanie L., Mohamad, Osama, Esteva, Andre, Chen, Emmalyn, Schaeffer, Edward M., Tran, Phuoc T., Feng, Felix Y.
Zdroj: European Urology Oncology; October 2024, Vol. 7 Issue: 5 p1024-1033, 10p
Abstrakt: Multimodal artificial intelligence models using digital histopathology slides outperform clinical and pathological variables for prognostic prediction of distant metastasis and prostate cancer–specific mortality, and can be incorporated in clinical practice for personalized risk stratification.
Databáze: Supplemental Index