Autor: |
Gavriilidou, Asimenia, Avci, Burak, Galani, Anastasia, Schorn, Michelle A, Ingham, Colin J, Ettema, Thijs J G, Smidt, Hauke, Sipkema, Detmer |
Zdroj: |
The ISME Journal; November 2023, Vol. 17 Issue: 11 p1808-1818, 11p |
Abstrakt: |
Members of the candidate phylum Dadabacteria, recently reassigned to the phylum CandidatusDesulfobacterota, are cosmopolitan in the marine environment found both free-living and associated with hosts that are mainly marine sponges. Yet, these microorganisms are poorly characterized, with no cultured representatives and an ambiguous phylogenetic position in the tree of life. Here, we performed genome-centric metagenomics to elucidate their phylogenomic placement and predict the metabolism of the sponge-associated members of this lineage. Rank-based phylogenomics revealed several new species and a novel family (CandidatusSpongomicrobiaceae) within a sponge-specific order, named here CandidatusNemesobacterales. Metabolic reconstruction suggests that Ca. Nemesobacterales are aerobic heterotrophs, capable of synthesizing most amino acids, vitamins and cofactors and degrading complex carbohydrates. We also report functional divergence between sponge- and seawater-associated metagenome-assembled genomes. Niche-specific adaptations to the sponge holobiont were evident from significantly enriched genes involved in defense mechanisms against foreign DNA and environmental stressors, host-symbiont interactions and secondary metabolite production. Fluorescence in situ hybridization gave a first glimpse of the morphology and lifestyle of a member of Ca. Desulfobacterota. CandidatusNemesobacterales spp. were found both inside sponge cells centred around sponge nuclei and in the mesohyl of the sponge Geodia barretti. This study sheds light on the enigmatic group Ca. Nemesobacterales and their functional characteristics that reflect a symbiotic lifestyle. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|