Abstrakt: |
The electrical power system (EPS) of a spacecraft (SC) plays a crucial role in the mission's success. This system provides electrical power to all loads of SC until its end of life (EOL). The primary power source onboard for the SC is the solar array (SA), while the storage battery serves as the secondary power source. We have developed a software program called the SC Charging Analysis Tool with Battery Management Algorithm (BMA) to address the challenges associated with the SC battery's charging and discharging processes. This tool fulfills two main objectives: first, to develop a BMA that effectively controls the battery charging and discharging processes through all modes of SC operation; second, to create a battery management environment with SC energy budget calculation capabilities to simulate the dynamic behavior of the SC battery using the developed BMA, thereby ensuring battery health. The battery management environment is specifically designed to verify the proper performance of the battery throughout the SC's lifetime and to execute operations during nominal conditions and throughout worst-case scenarios. Moreover, through the SC energy budget calculation, we can optimize the requirements of the chosen scenario to fit with the selected battery. However, during worst-case scenarios, the battery's vital parameters, including state of charge (SOC), thermal emission, voltage, and pressure, are calculated to verify its proper operation under the developed BMA. The dynamic behavior of the battery, in conjunction with the developed algorithms, will be validated using real telemetry data. The key result of this paper is the invention of a BMA, which contributes to the advanced management of SC battery systems and, consequently, better durability during challenging operational scenarios. |