Abstrakt: |
Background initialization is used in video processing applications to extract a scene without the foreground scene. In recent times, the issue of background initialization has gained researchers’ attention in different fields such as video surveillance, video segmentation, computational photography, and so on. The initialization of the background is affected due to different complex dissimilarities such as shadow, intermittent movement, illumination, camera jitter, and clutter. To overcome the aforementioned issues, this paper proposes a decomposition using the combination of the Singular Value Decomposition (SVD) and Robust Principal Component Analysis (RPCA) for Singular Spectrum Analysis (SSA) to perform an effective background initialization. The incorporation of RPCA in SVD is used to overcome the issues related to non-Gaussian noise and it also uses an effective structural knowledge of the video input i.e. sparse and low rank matrix which improves the Peak-Signal-to-Noise-Ratio (PSNR) of the background image. The SBI dataset was used to analyze the performances of SSA-SVDRPCA. The SSA-SVDRPCA is analyzed using MultiScale Structural Similarity Index (MSSSIM), Average gray-level error (AGE), Percentage of clustered error pixels (pCEPS), Percentage of error pixels (pEPs), and PSNR. The existing approaches such as Background Initialization Singular Spectrum Analysis (BISSA) and Quaternion-based Dynamic Mode Decomposition (Q-DMD) are used to compare with the SSA-SVDRPCA method. The PSNR of the SSA-SVDRPCA for Board class is 30.39 dB which is higher than the BISSA and Q-DMD. |