Abstrakt: |
A dual-chamber microbial fuel cell (MFC) was fabricated and optimized for electricity generation. Titanium wire, graphite rod, and carbon cloth supported on stainless steel mesh were the best current collector, anode, and cathode electrode materials, respectively. To enhance the efficacy of the system, carbon-based materials in nano-scale (nanocarbonized materials) were prepared from pomegranate peel waste at different hydrothermal temperatures (300, 500, and 700 oC), and were used as anode coating material. The synthesized coating materials were characterized using EDX, FT-IR, Raman spectroscopy, XRD, TEM, fluorescence, UV, and XPS analyses. Data showed that nanocarbonized material prepared at 500 oC exhibited high surface area (682 m2/g), high pore size (122 nm), and indicated the presence of graphene oxide (GO) structure. The electrochemical behavior of MFC was monitored by cyclic voltammetry and impedance measurements. Results revealed that the anode coated with GO provided high MFC performance with a maximum voltage of around 1000 mV, and a maximum current of 0.1 mA, corresponding to a maximum power density of 12.46 W/m2, which is 2.85-fold higher than that of a cell with a free graphite plate as an anode. Furthermore, the large charge transfer resistance and the low diffusive resistance observed upon coating the anode demonstrated the anode is functioning as a capacitor. The reported results proposed graphene oxide prepared from pomegranate peels as a novel coating anode material prepared from waste sustaining the idea of green curricular economy |