Abstrakt: |
The volatile anesthetic sevoflurane is degraded to fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (FDVE) in anesthesia machines. FDVE is nephrotoxic in rats. FDVE undergoes glutathione conjugation, subsequent conversion to cysteine and mercapturic acid conjugates, and cysteine conjugate metabolism by renal β-lyase, which is a bioactivation pathway mediating nephrotoxicity in rats. Recent in vitro studies revealed cytochrome P4503A-catalyzed formation of novel sulfoxide metabolites of FDVE cysteine-S and mercapturic acid conjugates in rat liver and kidney microsomes. FDVE−mercapturic acid sulfoxides were more toxic than other FDVE conjugates to renal proximal tubular cells in culture. Nevertheless, the occurrence and toxicological significance of FDVE sulfoxides formation in vivo remain unknown. This investigation determined, in rats in vivo, the existence, role of P4503A, and nephrotoxic consequence of FDVE conjugates sulfoxidation. Rats were pretreated with dexamethasone, phenobarbital, troleandomycin, or nothing (controls) before FDVE, and then, nephrotoxicity, FDVE−mercapturate sulfoxide urinary excretion, and FDVE−mercapturate sulfoxidation by liver microsomes were assessed. The formation of FDVE−mercapturic acid sulfoxide metabolites in vivo and their urinary excretion were unambiguously established by mass spectrometry. Dexamethasone and phenobarbital increased, and troleandomycin decreased (i) liver microsomal FDVE−mercapturic acid sulfoxidation in vitro, (ii) FDVE−mercapturic acid sulfoxide urinary excretion in vivo, and (iii) FDVE nephrotoxicity in vivo assessed by renal histology, blood urea nitrogen concentrations, and urine volume and protein excretion. Urine 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid, reflecting β-lyase-dependent FDVE−cysteine S-conjugates metabolism, was minimally affected by the pretreatments. These results demonstrate that FDVE S-conjugates undergo P4503A-catalyzed sulfoxidation in rats in vivo, and this sulfoxidation pathway contributes to nephrotoxicity. FDVE S-conjugates sulfoxidation constitutes a newly discovered mechanism of FDVE bioactivation and toxicification in rats, in addition to β-lyase-catalyzed metabolism of FDVE−cysteine S-conjugates. |