Development of a 3D Computer Simulation Model Using C++ Methods

Autor: Pasternak, Viktoriya, Ruban, Artem, Shvedun, Viktoriia, Veretennikova, Julia
Zdroj: Diffusion and Defect Data Part A: Defect and Diffusion Forum; August 2023, Vol. 428 Issue: 1 p57-66, 10p
Abstrakt: The article presents modelling of spherical elements based on the developed computer model. We recorded the main combinations of spherical particles during filling, which are formed in the hopper. It was found that the most likely combination that occurs when modelling spherical elements consists of three balls. It should be noted that in the cross-section of such a combination passing through the center of the balls, an equilateral triangle is formed. And in the cross-section of the structure, which consists of four spherical balls, a rhombus is formed, if you connect the centers of these spherical elements. It is worth noting that from this formed combination of spherical elements, it can be seen that the rhombus forms two smaller equilateral triangles that fix the process of pushing the spherical balls apart. In turn, the process of pushing spherical elements apart made it possible to fix the contact between spherical elements, as well as to state the stable position of each (individual) particle. This paper also presents the main fragments of encoding the source text of a 3D computer model for modelling spherical elements, which made it possible to optimize the model parameters. It was found that from the obtained data on the distribution of coordination numbers for different volume fillings of spherical elements, it follows that the largest filling was 72 %, which corresponds to the state when 112 lobules have an average coordination number of 3,92.
Databáze: Supplemental Index