Autor: |
Shet, M S, Fisher, C W, Holmans, P L, Estabrook, R W |
Zdroj: |
Proceedings of the National Academy of Sciences of the United States of America; December 1993, Vol. 90 Issue: 24 p11748-11752, 5p |
Abstrakt: |
Human cytochrome P450 3A4 is recognized as the catalyst for the oxygen-dependent metabolism of a diverse group of medically important chemicals, including the immunosuppressive agent cyclosporin; macrolide antibiotics, such as erythromycin; drugs such as benzphetamine, nifedipine, and cocaine; and steroids; such as cortisol and testosterone to name but a few. We have engineered the cDNA for human cytochrome P450 3A4 by linkage to the cDNA for the rat or human flavoprotein, NADPH-P450 reductase (NADPH:ferrihemoprotein oxidoreductase, EC 1.6.2.4). An enzymatically active fusion protein (rF450[mHum3A4/mRatOR]L1) has been expressed at high levels in Escherichia coli and purified to homogeneity. Enzymatic studies show a requirement for lipid, detergent, and cytochrome b5 for the 6 beta-hydroxylation of steroids and the N-oxidation of nifedipine. In contrast, these additions are not required for the N-demethylation of erythromycin or benzphetamine. A spectrophotometrically detectable metabolite complex of P450 3A4 is formed during the metabolism of triacetyloleandomycin, and this has a pronounced inhibitory effect on the metabolism of both testosterone and erythromycin. These results relate to the interpretation of current methods used to assess the in vivo activity of P450 3A4. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|