Abstrakt: |
The lipophilic cation triphenylmethylphosphonium (Ph3MeP+), which is widely used as a sensor for membrane potential with cells, organelles, and membrane vesicles, is shown also to accumulate in membranes rich in nicotinic acetylcholine receptor in a voltage-independent way. Evidence is presented that Ph3MeP+ in this system is bound to a cation-binding site of the ion channel that is part of the acetylcholine receptor complex. Binding is stimulated by cholinergic effectors (Kd = 13 microM in the absence of carbamoylcholine; Kd = 1.5 microM in the presence of 10 microM carbamoylcholine), and this stimulation is blocked by alpha-bungarotoxin. Ph3MeP+ blocks efflux of 22Na from receptor-rich microsacs and appears to compete with the channel ligand phencyclidine for a common binding site. In contrast to the binding of other proven channel ligands, Ph3MeP+-binding is not affected by desensitization. |