Abstrakt: |
This paper deals with studying numerically two circular turbulent jets impinging on a flat surface with a low velocity cross flow by using ANSYS CFX 16.2, with the aim of proving the effect ofReynolds number on the flow demeanor in a vertical circular free turbulent jet with cross flow. Five turbulence models of the RANS (Reynolds Averaged Navier–Stokes) approach were tested and the k -ω SST model was chosen to validate CFD results with the experimental data. Average velocity profiles, velocity and turbulent kinetic energy contours and streamlines are presented for four case configurations. In the first three cases, the following parameters have been varied: Reynolds number at the level of the two jets ( ), wind velocity at the level of the cross-flow ( ), and the distance between the two jets (S = 45mm, 90mm and 135mm). In the last case, a new configuration of the phenomenon not yet studied so far was treated, where horizontal cross-flows were introduced from both sides in order to simulate gusts of wind disrupting a VSTOL aircraft which tries to operate close to the ground. This case was carried out for Reynolds number based on the crossflow of 4 104, 10 104 and 20 104 .The numerical results obtained show that the deflection of the jets is minimal when the Reynolds number at the level of the jets is greater than that of the cross-flow. The increase of Reynolds number at the level of the cross-flow reveals a significant deviation of the two jets with an intensity which always remains less for the second jet. As for the space parameter between the two jets, it turns out that the fact of further spacing the two jets makes the first jet even more vulnerable and leads to a greater deflection. Finally, the simulation of the wind gusts from the front and the back caused a zone of turbulence which resulted from a form of "interlacing" of the two jets under the effect of the transverse current imposed by the two sides. |