Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres

Autor: Goldberg, I G, Sawhney, H, Pluta, A F, Warburton, P E, Earnshaw, W C
Zdroj: Molecular and Cellular Biology; September 1996, Vol. 16 Issue: 9 p5156-5168, 13p
Abstrakt: Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.
Databáze: Supplemental Index