Disease-activated transcription factor: allergic reactions in human skin cause nuclear translocation of STAT-91 and induce synthesis of keratin K17

Autor: Jiang, C K, Flanagan, S, Ohtsuki, M, Shuai, K, Freedberg, I M, Blumenberg, M
Zdroj: Molecular and Cellular Biology; July 1994, Vol. 14 Issue: 7 p4759-4769, 11p
Abstrakt: Epidermal keratinocytes have important immunologic functions, which is apparent during wound healing, in psoriasis, and in allergic and inflammatory reactions. In these processes, keratinocytes not only produce cytokines and growth factors that attract and affect lymphocytes but also respond to the polypeptide factors produced by the lymphocytes. Gamma interferon (IFN-gamma) is one such signaling polypeptide. Its primary molecular effect is activation of specific transcription factors that regulate gene expression in target cells. In this work, we present a molecular mechanism of lymphocyte-keratinocyte signaling in the epidermis. We have induced cutaneous delayed-type hypersensitivity reactions that are associated with an accumulation of lymphocytes. These resulted in activation and nuclear translocation of STAT-91, the IFN-gamma-activated transcription factor, in keratinocytes in vivo and subsequent induction of transcription of keratin K17. Within the promoter of the K17 keratin gene, we have identified and characterized a site that confers the responsiveness to IFN-gamma and that binds the transcription factor STAT-91. Other keratin gene promoters tested were not induced by IFN-gamma. These results characterize at the molecular level a signaling pathway produced by the infiltration of lymphocytes in skin and resulting in the specific alteration of gene expression in keratinocytes.
Databáze: Supplemental Index