Autor: |
Koreen, Larry, Ramaswamy, Srinivas V., Graviss, Edward A., Naidich, Steven, Musser, James M., Kreiswirth, Barry N. |
Zdroj: |
Journal of Clinical Microbiology; February 2004, Vol. 42 Issue: 2 p792-799, 8p |
Abstrakt: |
ABSTRACTStrain typing of microbial pathogens has two major aims: (i) to index genetic microvariation for use in outbreak investigations and (ii) to index genetic macrovariation for use in phylogenetic and population-based analyses. Until now, there has been no clear indication that one genetic marker can efficiently be used for both purposes. Previously, we had shown that DNA sequence analysis of the protein A gene variable repeat region (spatyping) provides a rapid and accurate method to discriminate Staphylococcus aureusoutbreak isolates from those deemed epidemiologically unrelated. Here, using the hypothesis that the genetic macrovariation within a low-level recombinogenic species would accurately be characterized by a single-locus marker, we tested whether spatyping could congruently index the extensive genetic variation detected by a whole-genome DNA microarray in a collection of 36 isolates, which was recovered from 10 countries on four continents over a period of four decades, that is representative of the breadth of diversity within S. aureus.Using spaand coatyping, pulsed-field gel electrophoresis (PFGE), and microarray and multilocus enzyme electrophoresis (MLEE) data in molecular epidemiologic and evolutionary analyses, we determined that S. aureuslikely has a primarily clonal population structure and that spatyping can singly index genetic variation with 88% direct concordance with the microarray and can correctly assign isolates to phylogenetic lineages. spatyping performed better than MLEE, PFGE, and coatyping in discriminatory power and in the degree of agreement with the microarray at various phylogenetic depths. This study showed that genetic analysis of the repeat region of protein A comprehensively characterizes both micro- and macrovariation in the primarily clonal population structure of S. aureus. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|