Simian Immunodeficiency Virus Containing Mutations in N-Terminal Tyrosine Residues and in the PxxP Motif in Nef Replicates Efficiently in Rhesus Macaques

Autor: Carl, Silke, Iafrate, A. John, Lang, Sabine M., Stolte, Nicole, Stahl-Hennig, Christiane, Ma¨tz-Rensing, Kerstin, Fuchs, Dietmar, Skowronski, Jacek, Kirchhoff, Frank
Zdroj: The Journal of Virology; May 2000, Vol. 74 Issue: 9 p4155-4164, 10p
Abstrakt: ABSTRACTSIVmac Nef contains two N-terminal tyrosines that were proposed to be part of an SH2-ligand domain and/or a tyrosine-based endocytosis signal and a putative SH3-ligand domain (P104xxP107). In the present study, we investigated the effects of combined mutations in these tyrosine and proline residues on simian immunodeficiency virus (SIV) Nef interactions with the cellular signal transduction and endocytic machinery. We found that mutation of Y28F, Y39F, P104A, and P107A (FFAA-Nef) had little effect on Nef functions such as the association with the cellular tyrosine kinase Src, downregulation of cell surface expression of CD4 and class I major histocompatibility complex, and enhancement of virion infectivity. However, mutations in the PxxP sequence reduced the ability of Nef to stimulate viral replication in primary lymphocytes. Three macaques infected with the SIVmac239 FFAA-Nef variant showed high viral loads during the acute phase of infection. Reversions in the mutated prolines were observed between 12 and 20 weeks postinfection. Importantly, reversion of A107?P, which restored the ability of Nef to coprecipitate a 62-kDa phosphoprotein in in vitro kinase assays, did not precede the development of a high viral load. The Y28/Y39?F28/F39substitutions did not revert. In conclusion, mutations in both the tyrosine residues and the putative SH3 ligand domain apparently do not disrupt major aspects of SIV Nef function in vivo.
Databáze: Supplemental Index