Abstrakt: |
The adenovirus E1A protein of 243 amino acids has been shown to affect a variety of cellular functions, most notably the immortalization of primary cells and the promotion of quiescent cells into S phase. The activity of E1A is derived, in part, from its association with various cellular proteins, many of which play important roles in regulating cell cycle progression. E1A is known to have multiple sites of phosphorylation. It has been suggested that cell cycle-dependent phosphorylation may also control some of E1A's functions. We find now that immune complexes of cyclin-dependent kinases such as cdk4, cdk2, and cdc2 are all capable of phosphorylating E1A in vitro. Additionally, the sites on E1A phosphorylated by these kinases in vitro are similar to the E1A sites phosphorylated in vivo. We have also found that a phosphorylated E1A is far more efficient than an unphosphorylated E1A in associating with pRB and in disrupting E2F/DP-pRB complexes as well. On the basis of our findings and the differences in timing and expression levels of the various cyclins regulating cdks, we suggest that E1A functions at different control points in the cell cycle and that phosphorylation controls, to some extent, its biological functions. |