Autor: |
Gross, Menachem, Ashqar, Fadi, Sionov, Ronit Vogt, Friedman, Michael, Eliashar, Ron, Zaks, Batya, Gati, Irith, Duanis-Assaf, Danielle, Feldman, Mark, Steinberg, Doron |
Zdroj: |
International Microbiology; 20240101, Issue: Preprints p1-11, 11p |
Abstrakt: |
Objectives: In this study, we aimed to develop a novel, sustained release varnish (SRV) for voice prostheses (VP) releasing chlorhexidine (CHX), for the prevention of biofilm formation caused by the common oral bacteria Streptococcus mutanson VP surfaces. Methods: This study was performed in an in vitro model as a step towards future in vivo trials. VPs were coated with a SRV containing CHX (SRV-CHX) or SRV alone (placebo-SRV) that were daily exposed to S. mutans. The polymeric materials of SRV were composed of ethylcellulose and PEG-400. Biofilm formation was assessed by DNA quantification (qPCR), crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and kinetics experiments. Results: The amount of DNA in the biofilms formed by S. mutanson VP surfaces coated once with SRV-CHX (1.024 ± 0.218 ng DNA/piece) was 58.5 ± 8.8% lower than that of placebo-SRV-coated VPs (2.465 ± 0.198 ng DNA/piece) after a 48-h exposure to S. mutans(p= 0.038). Reduced biofilm mass on SRV-CHX-coated VPs was visually confirmed by CLSM and SEM. CV staining of SRV-CHX single-coated VPs that have been exposed to S. mutansnine times showed a 98.1 ± 0.2% reduction in biofilm mass compared to placebo-SRV-coated VPs (p= 0.003). Kinetic experiments revealed that SRV-CHX triple-coated VPs could delay bacterial growth for 23 days. Conclusions: Coating VPs with SRV-CHX has an inhibitory effect on biofilm formation and prevents bacterial growth in their vicinities. This study is a proof-of-principle that paves the way for developing new clinical means for reducing both VPs’ bacterial biofilm formation and device failure. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|