Autor: |
Mochizuki, H, Yamada, H, Oikawa, Y, Murakami, K, Ishiguro, J, Kosuzume, H, Aizawa, N, Mochida, E |
Zdroj: |
Antimicrobial Agents and Chemotherapy; November 1988, Vol. 32 Issue: 11 p1648-1654, 7p |
Abstrakt: |
The bactericidal activity of M14659 against Escherichia coli in low-iron environments was investigated and compared with that of ceftriaxone and ceftazidime. The bactericidal activity of M14659 against E. coli in Mueller-Hinton broth was enhanced 30- to 20,000-fold by addition of transferrin, which is an iron-binding protein, whereas the activity of ceftriaxone or ceftazidime was much less strongly affected. This enhancement by transferrin was completely inhibited by saturating the iron-binding capacity of transferrin with FeCl3. M14659 was taken up markedly into bacterial cells in the presence of transferrin, and its uptake was inhibited by the protonophore dinitrophenol, which inhibits active-transport systems coupled to an energized membrane such as the iron transport systems of E. coli. The bactericidal activity of M14659, which chelates Fe3+, was also enhanced in the presence of other iron-binding compounds such as lactoferrin and alpha,alpha'-dipyridyl or in iron-deficient Mueller-Hinton broth (Fe3+ concentration, less than 2 nM) supplemented with FeCl3 at 0.1 to 1.0 microM, but not in unsupplemented iron-deficient Mueller-Hinton broth. The E. coli used in this study was confirmed to derepress iron transport systems in the presence of transferrin, lactoferrin, and alpha,alpha'-dipyridyl and in the iron-deficient Mueller-Hinton broth supplemented with FeCl3 at 0 to 1.0 microM. M14659 also showed an excellent antibacterial activity in vitro against other gram-negative bacteria in the low-iron environments. These findings indicate that M14659 may be actively taken up with Fe3+ into bacterial cells, probably through the iron transport systems under conditions of low iron and, thus, kills bacteria effectively. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|