Evidence for the Presence of Peroxisome Proliferator-activated Receptor (PPAR) α and γ and Retinoid Z Receptor in Cartilage

Autor: Bordji, Karim, Grillasca, Joël-Paul, Gouze, Jean-Noël, Magdalou, Jacques, Schohn, Hervé, Keller, Jean-Marie, Bianchi, Arnaud, Dauça, Michel, Netter, Patrick, Terlain, Bernard
Zdroj: Journal of Biological Chemistry; April 2000, Vol. 275 Issue: 16 p12243-12250, 8p
Abstrakt: Peroxisome proliferator-activated receptor (PPAR) α, PPARγ, and retinoid acid receptor-related orphan receptor (ROR) α are members of the nuclear receptor superfamily of ligand-activated transcription factors. Although they play a key role in adipocyte differentiation, lipid metabolism, or glucose homeostasis regulation, recent studies suggested that they might be involved in the inflammation control and especially in the modulation of the cytokine production. This strongly suggests that these transcriptional factors could modulate the deleterious effects of interleukin-1 (IL-1) on cartilage. However, to date, their presence in cartilage has never been investigated. By quantitative reverse transcription-polymerase chain reaction, Western blot, and immunocytochemistry analysis, we demonstrated, for the first time, the presence of PPARα, PPARγ, and RORα in rat cartilage, at both mRNA and protein levels. Comparatively, the PPARα mRNA content in cartilage was much lower than in the liver but not significantly different to that of the adipose tissue. PPARγ mRNA expression in cartilage was weak, when compared with adipose tissue, but similar to that found in the liver. RORα mRNA levels were similar in the three tissues. mRNA expression of the three nuclear receptors was very differently modulated by IL-1 or mono-iodoacetate treatments. This indicates that they should be unequally involved in the effects of IL-1 on chondrocyte, which is in accordance with results obtained in other cell types. Indeed, we showed that 15d-PGJ2 mainly, but also the drug troglitazone, that are ligands of PPARγ could significantly counteract the decrease in proteoglycan synthesis and NO production induced by IL-1. By contrast, PPARα ligands such as Wy-14,643 or clofibrate had no effect on this process. Therefore, the presence of PPARγ in chondrocytes opens up new perspectives to modulate the effects of cytokines on cartilage by the use of specific ligands. The function of the two other transcription factors, PPARα and RORα identified in chondrocytes remains to be explored.
Databáze: Supplemental Index