Pituitary Adenylyl Cyclase-activating Peptide Stimulates Extracellular Signal-regulated Kinase 1 or 2 (ERK1/2) Activity in a Ras-independent, Mitogen-activated Protein Kinase/ERK Kinase 1 or 2-dependent Manner in PC12 Cells*

Autor: Barrie, Anne P., Clohessy, Anna M., Buensuceso, Charito S., Rogers, Mark V., Allen, Janet M.
Zdroj: Journal of Biological Chemistry; August 1997, Vol. 272 Issue: 32 p19666-19671, 6p
Abstrakt: Sustained activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is critical for initiating differentiation of the PC12 cell to a sympathetic-like neurone. The neuropeptide, pituitary adenylyl cyclase-activating peptide (PACAP), has been demonstrated to cause cells to adopt a neuronal phenotype, although the mechanism of this activity is unclear. PACAP through its type I receptor stimulates a biphasic activation of ERK1/2; a >10-fold increase within 5 min, followed by a >5-fold increase that is sustained for ≥60 min. An equivalent stimulation is seen in PC12 cells expressing a dominant negative Ras mutant. However, the mitogen-activated kinase/ERK kinase 1/2 (MEK1/2) inhibitor PD98059 blocked both PACAP-induced stimulation of ERK1/2 activity and neurite outgrowth. Thus, the activation signal from the PACAP type I receptor on the ERK1/2 cascade pathway is received downstream of Ras, either at Raf or MEK. Down-regulation of protein kinase C or its inhibition by calphostin C blocked the ability of PACAP to stimulate ERK1/2. We conclude that activation of PACAP type I receptor activates protein kinase C, which then activates the ERK1/2 cascade in a Ras-independent manner at either Raf or MEK1/2.
Databáze: Supplemental Index