Autor: |
Beatrice, M C, Stiers, D L, Pfeiffer, D R |
Zdroj: |
Journal of Biological Chemistry; June 1982, Vol. 257 Issue: 12 p7161-7171, 11p |
Abstrakt: |
Ca2+ release from mitochondria induced by oxalacetate or t-butyl hydroperoxide is accompanied by loss of endogenous Mg2+ and K+, swelling, loss of membrane potential, and other alterations which indicate that Ca2+ release is a result of increased inner membrane permeability. When ruthenium red is added after Ca2+ uptake, but before the releasing agent, the extent of Ca2+ release is diminished as is the extent of Mg2+ and K+ depletion and the extent of swelling. Under these conditions, the membrane potential appears to remain at a high value. When Ca2+ release is induced by oxalacetate or t-butyl hydroperoxide and ruthenium red is added subsequently, an apparent regeneration of membrane potential is observed providing that the associated swelling and Mg2+ loss had not been completed at the time ruthenium red was added. Under these conditions subsequent swelling and Mg2+ loss are inhibited.l Ultrastructural observations show the mitochondria become permeable in response to Ca2+ plus oxalacetate or Ca2+ plus t-butyl hydroperoxide in a heterogeneous manner. Conditions which appear to separate Ca2+ release from a decline in membrane potential or to produce an apparent recovery of membrane potential following partial collapse are shown to prevent a subpopulation of the mitochondria from becoming permeable. It is shown that membrane potential probes will not indicate a decline in potential or the presence of a permeable fraction under these conditions. It is concluded that the presence of Ca2+ accumulation inhibitors does not separate Ca2+ release from the development of increased inner membrane permeability. |
Databáze: |
Supplemental Index |
Externí odkaz: |
|