The effect of chaotropic anions on the activation and the activity of spinach chloroplast fructose-1,6-bisphosphatase.

Autor: Stein, M, Wolosiuk, R A
Zdroj: Journal of Biological Chemistry; November 1987, Vol. 262 Issue: 33 p16171-16179, 9p
Abstrakt: The effect of chaotropic anions was studied on processes that constitute the chloroplast fructose-1,6-bisphosphatase reaction, i.e. enzyme activation and catalysis. The specific activity of chloroplast fructose-1,6-bisphosphatase was enhanced by preincubation with dithiothreitol, fructose 1,6-bisphosphate, Ca2+, and a chaotropic anion. When chaotropes were ranked in the order of increasing concentrations required for maximal activation they followed a lyotropic (Hofmeister) series: SCN- less than Cl3C-COO- less than ClO4- less than I- less than Br- less than Cl- less than SO4(2-). On the contrary, salts inhibited the catalytic step. The stimulation of chloroplast fructose-1,6-bisphosphatase by chaotropic anions arose from a decrease of the activation kinetic constants of both fructose 1,6-bisphosphate and Ca2+; on the other hand, in catalysis neutral salts caused a decrease of kcat because the S0.5 for both fructose 1,6-bisphosphate and Mg2+ remained unaltered. The molecular weight of chloroplast fructose-1,6-bisphosphatase did not change after the activation by incubation with dithiothreitol, fructose 1,6-bisphosphate, Ca2+, and a chaotrope; consequently, the action of these modulators altered the conformation of the enzyme. Modification in the relative position of aromatic residues of chloroplast fructose-1,6-bisphosphatase was detected by UV differential spectroscopy. In addition, the concerted action of modulators made the enzyme more sensitive to (a) trypsin attack and (b) S-carboxymethylation by iodoacetamide. These results provide a new insight on the mechanism of light-mediated regulation of chloroplast fructose-1,6-bisphosphatase; concurrently to the action of a sugar bisphosphate, a bivalent cation, and a reductant, modifications of hydrophobic interactions in the structure of chloroplast fructose-1,6-bisphosphatase play a crucial role in the enhancement of the specific activity.
Databáze: Supplemental Index